Content

Tutorial 7
---Chan Ki Fung

BACK

Questions of today

1. We recall two formula for the Gamma fuction. The first formula is Exercise 1 on page 174 of the text book:

A proof of this can be found in Tutorial 5. An important consequence of the formula is

The other formula is

which is theorem 1.4 of Lecture 10.

Show, for $b \in \mathbb{R}$,

2. Show that

3. Consider the functional equation

Consider the integral of

Using the previous question, show the following

6. Using question 3 to show that

Putting $s=2n$, and use out the knowledge of special values of Γ and ζ (together with part a), we have

Hints & solutions of today

We will take $s=1$ (or $s\rightarrow 1$), so we calculate the terms one by one. For Gamma functions, we use

On the other hand, we see from tutorial 6 question 1 (together with corollary 2.6 of lecture 11) that $\zeta(s) = \frac{1}{s-1} + \gamma + O(|s-1|)$, so

2.

- 3. a. By a direct substitution.
	- b. First argue $\xi(s)$ has infinitely many zeros as follow: Since $\Xi(s)$ is an even function, $\Xi(\sqrt{s})$ is welldefined. Then note that $\Xi(\sqrt{s})$ has order $\frac{1}{2}$, and so has infinitely many zeros by Homework 2 question 5.

 Next argue that $\xi(s)$ has no zeros outside the range $0 \leq \mathrm{Re}(s) \leq 1$ using the formula

Finally, use the above formula again to conclude.

4. Let $I(s) = \int_C \frac{z^{s-1}}{e^z-1} dz$. An application of Cauchy's theorem would tell that $I(s)$ is independent of δ , so we may take $\delta \to 0$. From $\mathbb{R}\text{e}(s) \geq 1$, we can also see that the part of the integral over the circle is $\rightarrow 0$ when $\delta \rightarrow 0$. Therefore, *zs*−¹ $\frac{z}{e^z-1}$ d z . An application of Cauchy's theorem would tell that $I(s)$ is independent of δ

1. Note that $|\Gamma(z)|^2 = \Gamma(z)\Gamma((z))$ by the first formula. Now, using the second formula \overline{a} (*z*))

Therefore,

5. a. Since

we see from residue theorem that

Using the formula in the previous question, we have

a.
$$
\zeta(-n) = (-1)^n \frac{B_{n+1}}{n+1}
$$
 for $n \in \mathbb{Z}_{\geq 0}$.
b. $\zeta(2n) = (-1)^{n+1} \frac{B_{2n}(2\pi)^{2n}}{2(2n)!}$ for $n \in \mathbb{Z}_{>0}$.
c. $\zeta'(0) = -\frac{1}{2} \log 2\pi$.

b. We will make use of the functional equation

so

We see that

and

6. Deduce the factorization from the Hadamard factorization of $\tilde{\xi}$. The constants can be obtained using 5a and 5c. *ξ*

Combining them together, we have,

$$
\Gamma(z)=\lim_{z\to\infty}\frac{n!n^z}{z(z+1)\cdots(z+n)}
$$

.

$$
\Gamma(\overline{z})=\Gamma(z).
$$

$$
\Gamma(1-z)\Gamma(z)=\frac{\pi}{\sin(\pi z)},
$$

$$
\left|\Gamma(bi)\right|^2=\frac{\pi}{b\sinh(b\pi)}
$$

$$
\log \zeta (s)=s\int_2^\infty \frac{\pi(x)}{x(x^s-1)}dx.
$$

$$
\zeta(s)=\pi^{s-1/2}\frac{\Gamma((1-s)/2)}{\Gamma(s/2)}\zeta(1-s).
$$

A direct consequence of the functional equation is that $ζ(-2n)=0$ for $s\in \mathbb{Z}_{>0}.$ Recall

$$
\xi(s)=\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)
$$

is a meromorphic function on $\mathbb C$ with simple poles at $s=0$ and $s=1$. To work with entire functions, let is a meromorphic function on $\mathbb C$ with simple poles at $s=0$ and $s=1$ us define $\tilde \xi(s)=s(1-s)\xi(s),$ and $\Xi(s)=\tilde \xi(1/2+is).$ $\tilde{\xi}(s) = s(1-s)\xi(s)$, and $\Xi(s) = \tilde{\xi}(1/2+is)$

- a. Show that the functional equation is equivalent to the statement that $\Xi(s)$ is an even function.
- b. In the midterm question 3, you showed that $\xi(s)$ is of growth order 1, and thus $\Xi(s)$ is also of growth order 1. Deduce that $\zeta(s)$ has infinitely many zeros in the strip $0 \leq \text{Re}(s) \leq 1.$
- 4. Recall the formula (HW 3), for $\mathrm{Re}(s) \geq 1$,

$$
\zeta(s)\Gamma(s)=\int_0^\infty\frac{x^{s-1}}{e^x-1}dx
$$

$$
\frac{z^{s-1}}{e^z-1}
$$

over the counter C which consists of three parts, the first part is the part of the real axis from ∞ to some small positive δ , the second part is the circle $|z|=\delta$ in anticlockwise direction, the last part is the part of real axis from δ to ∞ . Show that

$$
\zeta(s)=\frac{e^{-\pi i s}\Gamma(1-s)}{2\pi i}\int_C\frac{z^{s-1}}{e^z-1}dz.
$$

5. Let us write the Taylor expansion of $z/(e^z-1)$ as

$$
\frac{z}{e^z-1}=1+B_1z+B_2\frac{z^2}{2!}+B_3\frac{z^3}{3!}+\cdots
$$

¯ ¯ log *ζ*(*s*) = log (∏ *p* 1 1 − ¹ *ps*) = −∑ *p* log (¹ [−] ¹ *^p^s*) = − ∞ ∑ *n*=2 (*π*(*n*) [−] *^π*(*ⁿ* [−] 1))log (¹ [−] ¹ *ⁿ^s*) = − ∞ ∑ *n*=2 *^π*(*n*)[log (¹ [−] ¹ *ⁿ^s*) [−] log (¹ [−] ¹ (*ⁿ* ⁺ 1)*^s*)] = ∞ ∑ *n*=2 *π*(*n*) ∫ *n*+1 *n s x*(*x^s* − 1) *dx* = *s* ∫ ∞ 2 *π*(*x*) *x*(*x^s* − 1) *dx*

$$
\zeta(s)=\frac{Ae^{bs}}{(s-1)\Gamma(1+s/2)}\prod\Bigg(1-\frac{s}{\rho}\Bigg)e^{s\rho},
$$

for some constant $A,b.$ Show that $A=\frac{1}{2}$, and $b=\log 2\pi - 1 - \frac{1}{2}\gamma.$

$$
\Gamma(1 - bi)\Gamma(bi) = \frac{\pi}{\sin(b\pi i)}
$$

$$
-bi\Gamma(-bi)\Gamma(bi) = \frac{\pi}{\sin(b\pi i)}
$$

$$
\Gamma(-bi)\Gamma(bi) = \frac{\pi}{-bi\sin(b\pi i)} = \frac{\pi}{b\sinh(b\pi)}
$$

$$
\xi(s)=\pi^{-s/2}\Gamma(\frac{s}{2})\zeta(s)
$$

$$
I(s)=-\int_0^\infty \frac{x^{s-1}}{e^z-1}dx++\int_0^\infty \frac{(xe^{2\pi i})^{s-1}}{e^z-1}dx.
$$

(Note the negative sign of the first integral is due to its orientation, also note that we need an extra $e^{2\pi i}$ for the change of argument of \log in the second integral.) And hence

$$
I(s)=(e^{2\pi i s}-1)\zeta(s)\Gamma(s)
$$

$$
\zeta(s)=\frac{1}{(e^{2\pi i s}-1)\Gamma(s)}I(s)\\=\frac{\Gamma(1-s)\sin(\pi s)}{\pi(e^{2\pi i s}-1)}I(s)\\=\frac{e^{-\pi i s}\Gamma(1-s)}{2\pi i}I(s)
$$

As a remark, although we only prove the formula for $\mathrm{Re}(s) \geq 1$, the integral actually converges actually for all $s\in\mathbb{C}$, and defines an entire function, so we have the equality for any s by analytic continuation. On the other hand, note the the integral over the small circle of radius δ may not converge to 0 .

$$
\frac{z}{e^z-1}=1+B_1z+B_2\frac{z^2}{2!}+B_3\frac{z^3}{3!}+\cdots,
$$

$$
I(-n)=\int_C \frac{z^{s-1}}{e^z-1}dz=\frac{2\pi i B_{n+1}}{(n+1)!}
$$

$$
\zeta(-n) = \frac{e^{\pi i n} \Gamma(n+1)}{2 \pi i} \frac{2 \pi i B_{n+1}}{(n+1)!} \\ = (-1)^n \frac{B_{n+1}}{n+1}
$$

$$
\zeta(s)=\pi^{s-1/2}\frac{\Gamma((1-s)/2)}{\Gamma(s/2)}\zeta(1-s).
$$

$$
\begin{aligned} &\zeta(2n)=\pi^{2n-1/2}\frac{\frac{\sqrt{\pi}}{(-1/2)(-3/2)\cdots(-(2n-1)/2)}}{(n-1)!}\frac{(-1)^{2n-1}B_{2n}}{2n}\\&=(-1)^{n+1}\pi^{2n}2^{n}\frac{1}{1\cdot 3\cdot 5\cdots (2n-1)}\frac{1}{1\cdot 2\cdot 3\cdots (n-1)}\frac{B_{2n}}{2n}\\&=(-1)^{n+1}\pi^{2n}2^{n}\frac{1}{1\cdot 3\cdot 5\cdots (2n-1)}\frac{2^{n-1}}{2\cdot 4\cdot 6\cdots (2n-2)}\frac{B_{2n}}{2n}\\&=(-1)^{n+1}\frac{B_{2n}(2\pi)^{2n}}{2(2n)!}.\end{aligned}
$$

c. We take \log derivative for the functional equation:

$$
\frac{\zeta'(s)}{\zeta(s)} = \log \pi - \frac{\Gamma'((1-s)/2)}{2\Gamma((1-s)/2)} - \frac{\Gamma'(s/2)}{2\Gamma(s/2)} - \frac{\zeta'(1-s)}{\zeta(1-s)}
$$

$$
\Gamma(s)=\frac{e^{-\gamma s}}{s}\prod_{n=1}^{\infty}\left(1+\frac{s}{n}\right)^{-1}e^{s/n}
$$

$$
\frac{\Gamma'(s)}{\Gamma(s)} = -\gamma - \frac{1}{s} + \sum_{n=1}^\infty \left(\frac{1}{n}-\frac{1}{n+s}\right)
$$

$$
\frac{\Gamma'(s)}{\Gamma(s)} = -\frac{1}{s} - \gamma + O(s)
$$

$$
\frac{\Gamma'(1/2)}{\Gamma(1/2)} = -\gamma - 2 + \sum_{n=1}^{\infty} (\frac{1}{n} - \frac{2}{2n+1})
$$

= -\gamma - (1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots)
= -\gamma - \log 2.

$$
\frac{\zeta'(s)}{\zeta(s)} = \frac{-1/(s-1)^2 + O(|s-1|)}{1/(s-1) + \gamma + O(|s-1|)}\\ = -\frac{1}{s-1} + \gamma + O(|s-1|)
$$

$$
\frac{\zeta'(1-s)}{\zeta(1-s)} = \log \pi - \frac{1}{2}(-\frac{2}{1-s} - \gamma) - \frac{1}{2}(-\gamma - \log 2) - (-\frac{1}{s-1} + \gamma) + O(s) \\ = \log 2\pi + O(s)
$$

Finally, we get the result by noting that $\zeta(0) = B_1 = -\frac{1}{2}$ from part a.